What Have We Learned in Seven Conferences on Unburned Carbon on Utility Fly Ash #### A Review of Past Conferences Thomas C. Ruppel Parsons Corporation 2002 Conference on Unburned Carbon on Utility Fly Ash May 14, 2002 #### **Categories from Technical Presentations** #### **Frequency of Topical Presentations** #### What Have We Learned? - * Control Measures for UBC - * Instrumentation to Measure Unburned - * Beneficiation of High-LOI Fly Ash - * New Uses for High-LOI Fly Ash - * Characterization of High-LOI Fly Ash ### Control Measures for UBC Presented at the Conferences - * Balancing coal distribution among - * Combustion optimization software - * Improving the three T's (time, - * Increasing the fineness (decreasing ## Control Measures for UBC Presented at the Conferences #### Continued - * Increasing the thickness of the furnace slag layer - ***** Low-NOx-burners - * Natural gas cofiring - ***** Overfire air - * Slagging combustors # Control Measures for UBC Presented at the Conferences continued - * Optimizing Engineering Parameters: - a. ash loading - b. boiler unit load - c. excess air - d. firing system design - e. furnace internal fuel-air swirl - f. heating value of coal - g. moisture - h. mill bias, maintenance, tilt angle, and air flow - i. residence time #### % UBC UBC levels pre- & post- combustion modifications #### % UBC (cont'd) UBC levels pre- & post- combustion modifications # Instrumentation to Measure Unburned Carbon on Fly Ash On-Line – In-Situ - * Dielectric strength of particle (Sekam, Clyde - * Infrared absorption by particles - * Microwave absorption by particles - * Optical sensors (MK Eng., MA) - *** Spectrophotometer** (Concarb 2000, PA) # Instrumentation to Measure Unburned Carbon on Fly Ash On-Line – Extractive * Infrared reflectance by particles (RCA, M&W Asketeknik, Denmark) ***** Microwave absorption by particles (CAMRAC, PA) 10 # Instrumentation to Measure Unburned Carbon on Fly Ash Off-Line #### Based on: - * Color of fly ash (Shamrock Env., FL) - *** Gravimetric** (HOT FOIL LOI, FERC, CA) - * Subsonic signal from a carbon-in-ash sample irradiated with visible light (IA State Univ.) ### **Beneficiation of High-LOI Fly Ash** - * Acoustically agitated bubbling fluidized bed (Lehigh Univ., PA) - **★ Electrostatic separation** (STI, MA) - **★ Froth flotation** (MTU) ## Beneficiation of High-LOI Fly Ash Continued ***** Pneumatic transport separator (Tribo Flow Sepns. & UKY) * Triboelectric (triboelectrostatic) (9 presentations) * Vibrating electrostatic separator (Minerals & Coal Tech., VA, Korean coals) ## High-LOI Fly Ash Carbon Reduction by Burn-Off - * Carbon burnout via a close-coupled burnout reactor (Prog. Matls., FL and SC Elec. & Gas) - * Microwave heating to decarbonize <u>low-</u> <u>LOI</u> fly ash (Microwave Tech. Corp., Canada) - * Recycling beneficiated high-LOI fly ash back into furnace (New England Power, STI process, then recycle C-rich stream) ### **New Uses for High-LOI Fly Ash** - * Activated carbon source (Penn State Univ.) - * Autoclaved aerated concrete (as a sawable nonrotting wood replacement) * Cement kiln fuel (Morrison Technology, ME) ## New Uses for High-LOI Fly Ash Continued - * Concrete manufacture (9 presentations) Construction materials (e.g., concrete blocks, ash bricks, panels) (Univ. of Denver) - * Flowable fill (low load strength backfill) (Hands On Tech!, MA) 16 ## New Uses for High-LOI Fly Ash Continued - **★ Industrial binder for metal casting and**(MTU) - * Improved structural fill (subgrade/ Robert Kimball Assoc., PA) * Phosphoric acid-based cements and (Answer Tech., IL) ## New Uses for High-LOI Fly Ash Continued - * Reinjection of fly ash into power plant slip-stream (mercury removal) (ADA Tech., CO) - * Silicaceous material source for vitrification to glass and ceramics (Vortec Corp., PA) - * Soil amendments ("crops grow well"), food crops contain low levels of ash metals (scs, AL) #### What Have We Learned? * Characteristics of UBC: Initial BET surface area: activated to ca. ## What Have We Learned? Continued * Characteristics of UBC, continued: - d) Porosity: 20-500 A (mesopore range) - e) Bulk densities: 1.5 to 1.95 g/cc - f) Appears to have the structure of highly disordered graphite ## What Have We Learned? Continued * Process improvements undertaken to reduce NOx emissions and improve boiler operation can reduce UBC levels by approximately half. ## What Have We Learned? Continued - * Based on a number of conference presentations, we now have information on about a dozen techniques for each of the following: - a) Measuring UBC on fly ash - b) Separating (beneficiating) UBC from fly ash - c) New uses for high-LOI fly ash. ### What Have We Learned? Continued * Conference confirmed that control of UBC on flyash by combustion modification must be replaced by or coupled with SCR and/or SNCR to meet NOx emission requirements ### What Hasn't the Conference Heard Yet? Effects on Unburned Carbon - ***** Burners out of service - * Combination of combustion/postcombustion technologies - * Flue gas recirculation - * Reduced air preheat - * Steam or water injection - * Ultra-low excess air - * Clear Skies Initiative ### Unburned Carbon Conference Team Members - * Tom Sarkus, NETL, Conference Chair - * Leo Makovsky, NETL, Team Leader - * Karen Lockhart, Science Applications International Corporation (SAIC), Certified Conference Planner - * Al Mann Parsons Corporation - * Tom Ruppel Parsons Corporation 25